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Due to their non-volatility and intrinsic current integration capabilities, spintronic devices that rely on 

domain wall (DW) motion through a free ferromagnetic track have garnered significant interest in the 

field of neuromorphic computing. Although a number of such devices have already been proposed, 

they require the use of external circuitry to implement several important neuronal behaviors. As such, 

they are likely to result in either a decrease in energy efficiency, an increase in fabrication complexity, 

or even both. To resolve this issue, we have proposed three individual neurons that are capable of 

performing these functionalities without the use of any external circuitry. To implement leaking, the 

first neuron uses a dipolar coupling field, the second uses an anisotropy gradient, and the third uses 

shape variations of the DW track. 
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1.   Introduction 

Although modern von Neumann computers are 

capable of efficiently solving problems of immense 

proportions, they are highly ineffective at solving 

problems without a structured data set, such as image 

recognition. In fact, the human brain can significantly 

outperform computers in terms of both power 

efficiency and speed1-3 when solving these problems. 

According to neuroscientists, this impressive 

efficiency can be attributed to interactions between 

neurons and synapses. A neuron is a complex cell 

consisting of several components – the axons receive 

input current pulses from other neurons, the soma 

integrates those pulses and generate output pulses once 



certain conditions are met, and the dendrites feed the 

output pulses produced by the soma into other 

neurons. Synapses, on the other hand, are electrically 

conductive components that connect the dendrites of 

one neuron to the axons of other neurons. 

One of the primary goals in the field of machine 

learning is to accurately emulate the behavior of these 

biological systems. Although it is possible to 

implement this using software on standard 

computers4,5, this method is highly inefficient, since 

the hardware was not specifically designed to perform 

machine learning, and consumes considerably more 

energy than an actual brain6. It is also possible to 

design machine learning hardware accelerators that 

use complementary metal oxide semiconductor 

(CMOS) technology2,3; however, the volatility of these 

transistors is not ideal for this application, especially 

due to the memory dependence of many key 

algorithms. Therefore, researchers have been 

attempting to develop non-volatile components to 

implement both synapses and neurons. Numerous 

devices, including memristors7,8, magnetic skyrmion 

devices9,10, three terminal magnetic tunnel junctions 

(3T-MTJs)11,12, and even organic devices13, have 

already been proposed that successfully emulate 

synaptic behavior. Due to the complex behaviors 

occurring in the somas of biological neurons, 

considerably fewer devices have been proposed to 

replicate neurons; however, these proposed neurons all 

require external circuitry to implement certain 

necessary neuronal functions. To resolve this issue, we 

have developed three separate three-terminal magnetic 

tunnel junction (3T-MTJ) based neurons that are 

capable of intrinsically implementing the desired 

neuronal behavior14-16. Section 2 provides a 

background into neural networking and 3T-MTJs, 

while Sections 3-5 provide detail regarding our three 

proposed neurons. Section 6 will discuss system 

implementation and provide an example with 

handwritten digit recognition, followed by conclusions 

in Section 7. 

2.   Background 

A hardware-based neural network implemented using 

emerging technologies requires the devices to be 

connected in such a fashion as to be compatible with 

currently existing fabrication methods. This gives rise 

to the neural network crossbar array, in which 

synapses provide weights from one set of neurons to 

another. 

2.1.   Neural network crossbar array 

In an NxM neural network, N input neurons are 

connected to the inputs of the horizontal wires (word 

lines) and M output neurons are connected to the 

outputs of the vertical wires (bit lines). N*M 

electrically conductive synapses form the intersections 

between the word and bit lines, and their resistance 

states determine the weighting between the input 

neurons and the output neurons17-20. 

2.2.   Leaky integrate-and-fire neuron 

In order to accurately emulate a biological neuron, 

researchers have developed what is known as a Leaky 

Integrate-and-Fire (LIF) neuron, which improved on 

the previous Integrate-and-Fire neuron4. As the name 

suggests, an LIF neuron should implement three 

different functionalities – integrating, leaking, and 

firing. During the integration phase, a neuron 

integrates a series of input current spikes. This process 

increases the energy stored in the neuron, which can 

be represented as a voltage, or even a domain wall 

(DW) position. When no input current spike is fed into 

the neuron, it enters the leaking phase, where the 

stored energy gradually leaks over time. Finally, if the 

stored energy reaches a certain threshold, the device 

will fire, releasing all of its stored energy as a single 

output spike. A secondary functionality that an LIF 

output neuron should implement is lateral inhibition – 

if one neuron has integrated more input spikes than the 

other, it will inhibit the integration process of other 

neurons. Using this, it is possible to implement a 

Winner Take All (WTA) system, where one neuron 

firing for a given data set will reset not only itself, but 

all other neurons as well. In other words, only one 

neuron can fire at a time. 

2.3.   Three terminal magnetic tunnel junction 

In general, a magnetic tunnel junction (MTJ) consists 

of a free ferromagnetic layer electrically insulated 

from a pinned, or fixed, ferromagnetic layer by a 

tunnel junction. When an external stimulus is applied 

to the device, the magnetization state of the free 

ferromagnetic layer is capable of switching between 



two states – antiparallel to the fixed layer and parallel 

to the fixed layer. When the free layer is in the 

antiparallel state, it polarizes current antiparallel to the 

fixed layer, which causes the fixed layer to inhibit 

electron flow. This results in a high resistance state. 

Similarly, when the free layer is in the parallel state, it 

polarizes current parallel to the fixed layer. In this 

case, however, the current is not impeded by the fixed 

layer, resulting in a low resistance state. 

If the free layer of an MTJ is elongated and 

contains two oppositely magnetized magnetic domains 

instead of one, the device becomes a three terminal 

magnetic tunnel junction (3T-MTJ). At the boundary 

between the two domains exists a domain wall (DW). 

When a current is passed through the DW track, the 

DW will shift in the direction opposite to the applied 

current19,20. By shifting the DW to one side of the track 

or the other, it is possible to switch the device between 

the high and low resistance states. Because of their 

non-volatility, these devices have garnered significant 

interest for neuromorphic computing and logic21-24. 

3.   Intrinsically Leaking 3T-MTJ Device with 

Dipolar Coupling Field 

In most cases, DWs in 3T-MTJ based neurons leak 

using external circuitry that produces a current to shift 

the DWs. However, it is possible to use an dipolar 

coupling field to induce leaking in the device. 

3.1.   Device Structure 

This device is almost identical to a standard 3T-MTJ 

device. However, as shown in Figure 1, it contains an 

electrically isolated ferromagnet underneath the DW 

track that applies a magnetic field to the track. 

 

Fig. 1. 3T-MTJ with fixed ferromagnet underneath. The magnetic 

field applied by the fixed ferromagnet on the bottom will cause the 

DW (shown in red) to move from right to left. 

 

 

Fig. 2. (a) DW position and current density vs time demonstrating 

combined integrating and leaking functionalities. Each 2 ns 

integration period is followed by a 30 ns leaking period where no 

input is applied resulting in a 96 ns total runtime. (b) Average DW 

velocity vs current density. As the current density increases, the 

integration speed increases as well. (c) Snapshots of the 

micromagnetic simulation for time t =0 ns, t = 2 ns, t = 32 ns, t = 

34 ns, t = 64 ns, t = 66 ns, and t = 96 ns. Note that the DW 

magnetization state rotates – this is evidence of DW precession. 

 

The device was simulated using version 3.10 of 

the micromagnetic simulator mumax325. The length of 

the device is 600 nm, the width of the device is 32 nm, 

and the thickness of the device is 1 nm, while the cell 

sizes were 1x1x1 nm3. However, the DW does not 

have a 600 nm range of motion in the track, since 30-

nm-wide antiferromagnets at either end of the track 

generate regions of frozen spin to prevent the DW 

from annihilating itself on the edges of the material. 

This results in a 540 nm range of motion for the DW. 

Similar to CoFeB, the magnetic saturation Msat is 1 T, 

the exchange stiffness Aex is 1.3*10-11 J/m, the 

perpendicular anisotropy constant ku1 is 4*105 J/m3, 

the non-adiabaticity factor ξ is 0.9, the Landau-

Lifshitz-Gilbert damping constant α is 0.015. The 

polarization of spin-transfer torque is 1; the use of a 

more practical value would act only as a scaling factor. 



3.2.   Leaking with dipolar coupling field 

When a magnetic field is applied to a magnetic 

domain in the same direction as the domain’s 

magnetization state, the domain will expand. 

Conversely, when a magnetic field is applied to a 

magnetic domain in the direction opposite to the 

domain’s magnetization state, the domain will shrink. 

Applying a magnetic field to a DW track is a 

combination of these effects – one of the domains will 

expand, while the other will shrink. This causes the 

DW to shift without any external circuitry. 

3.3.   Combined integrating and leaking with 

dipolar coupling field 

Figure 2 demonstrates the combined integrating and 

leaking functionalities of the device. A series of three 

2 ns current pulses are applied to the DW track, each 

followed by a 30 ns leaking period where no input is 

applied to the device. 

3.4.   Firing through magnetoresistance 

switching 

We assume that the DW will fire whenever it passes 

underneath the MTJ, switching the resistance from a 

high-resistance state to a low resistance state. This will 

produce an output current spike. During the firing 

process, the DW will also be reset to its original state. 

For a brief ‘refractory’ period after firing, the device 

will not integrate any input current spikes.  

4.   Intrinsically Leaking 3T-MTJ Device with 

Graded Anisotropy 

4.1.   Device structure 

Similar to the 3T-MTJ with an dipolar coupling field, 

the device structure is almost identical to a standard 

3T-MTJ. However, instead of a ferromagnet placed 

underneath the DW track, this device contains an 

anisotropy gradient26, which can be achieved using a 

thickness and/or composition gradient27-29. The 

possibility of creating a voltage-induced anisotropy 

gradient has also been suggested30. 

The device has a length L of 250 nm, a width w of 

32 nm, and a thickness t of 1.5 nm, while the cell size 

is 1x1x1.5 nm3. This device has 10 nm wide frozen 

spin regions, resulting in a 230 nm range of motion for 

the DW. The exchange stiffness Aex is 1.3*10-11 J/m, 

the Landau-Lifshitz-Gilbert damping constant is α is 

0.02, the non-adiabaticity of spin transfer torque ξ is 

0.2, and the magnetic saturation Msat is 800*103 A/m. 

The lower anisotropy value anisl is 0.5*106 J/m3, and 

the upper anisotropy value anish is 5*106 J/m3. In this 

case, since no external excitation is applied, the 

dipolar coupling field Bext is 0 T. 

4.2.   Leaking with graded anisotropy 

When a DW exists in a track with a low anisotropy, it 

is in a lower energy state than if it existed in a track 

with a stronger magnetocrystalline anisotropy. 

Therefore, by linearly varying the anisotropy, it is 

possible to generate an energy landscape that is more 

favorable to the DW existing on one end of the track 

than on the other. This causes the DW to shift from the 

region of higher anisotropy to the region of lower 

anisotropy without the use of a current or magnetic 

field. 

4.3.   Combined integrating and leaking with 

graded anisotropy 

Figure 3 illustrates the combined integration and 

leaking functionalities of a 3T-MTJ neuron with 

graded anisotropy. Again, there are three 2 ns current 

pulses, but each pulse is followed by a 50 ns leaking 

period. 

 

Fig. 3. DW position and current density vs time demonstrating the 

combined leaking and integrating functionalities of a 3T-MTJ 

neuron with graded anisotropy. Each 2-ns-wide current pulse is 

followed by a 50 ns leaking period, resulting in a 156 ns runtime. 



4.4.   Firing through magnetoresistance 

switching 

The firing mechanism for this neuron is identical to 

that of the neuron with a dipolar coupling field. Once 

the DW passes underneath the MTJ, the neuron resets 

itself and releases an output pulse. This is followed by 

a brief refractory period. 

5.   Intrinsically Leaking 3T-MTJ Device with 

Shape-Based DW Drift 

5.1.   Device structure 

This device is similar to a standard 3T-MTJ; however, 

instead of having a rectangular x-y cross-section, it has 

a trapezoidal x-y cross-section. This structure is 

illustrated in Figure 4. 

Fig. 4. (a) Side view of the device. (b) Top view of the device, 

demonstrating the trapezoidal x-y cross-section. The narrow end 

has width w1, while the wide end has width w2. 

The device has a length L of 250 nm and a 

thickness t of 1.5 nm, and the left end of the device has 

width w1 of 25 nm while the right end of the device 

has width w2 of 100 nm. Again, the device has 10-nm-

wide frozen spin regions on both sides of the track, 

resulting in a DW range of motion of 230 nm. The 

material parameters represent CoFeB31, where the 

exchange stiffness Aex = 1.3*10-11 J/m, the Landau-

Lifshitz-Gilbert damping constant α = 0.02, the non-

adiabaticity of spin-transfer torque ξ = 0.2, and the 

magnetic saturation Msat = 1 T. 

5.2.   Leaking with shape-based DW drift 

Similar to a DW in a track with graded anisotropy, a 

DW in a trapezoidal track will exist in a lower energy 

state in a narrower region of the track and will exist in 

a higher energy state in a wider region of the track23. 

Again, this creates an energy landscape that is 

favorable to the DW existing at the left end of the 

track. If the DW is shifted to a wider end of the track 

using a current, it will begin to shift back to the 

narrower end after the current is removed. 

5.3.   Firing through magnetoresistance 

switching 

The firing mechanism for this neuron is identical to 

that for the neuron with an dipolar coupling field and 

the neuron with a graded anisotropy. Once the DW 

passes underneath the MTJ, the neuron resets itself and 

releases an output pulse. This is followed by a brief 

refractory period. 

6.   Lateral Inhibition 

6.1.   Intrinsically Leaking 3T-MTJ Device with 

Shape-Based DW Drift 

Due to the fact that a 3T-MTJ consists primarily of a 

ferromagnetic track, it will produce fringe fields to 

either side. Similar to a ferromagnet placed underneath 

the track, this can act as an external field for other 

neurons. If the DW of one neuron exists in a higher 

energy state than a neighboring neuron, the first 

neuron’s fringe fields will inhibit the second neurons 

progression. Conversely, if one neuron exists in a 

lower energy state than a neighboring neuron, the first  



Fig. 5. The fringe field generated by the +z magnetized region 

(white) in the upper DW is effectively an dipolar coupling field in 

the –z direction at the lower neuron.  This will generally cause the 

–z region (black) in the lower neuron to expand and the +z region 

in the lower neuron to shrink, unless the integration force is large 

enough to overcome the combined inhibition and leaking forces. In 

turn, the lower neuron will tend to integrate slower than the upper 

neuron. 

neuron will actually promote the second neuron’s 

integration.  This effect is illustrated in Figure 5. 

An example of lateral inhibition is shown in 

Figure 6, where two side-by-side neurons receive 

constant inputs. In the first case, where the upper 

neuron (neuron 1) receives an input current density of 

1.5*1012 A/m2 and the lower neuron (neuron 2) 

receives an input current density of 2*1012 A/m2, 

neuron 2 is finished integrating by t = 7.3 ns, while 

neuron 1 did not finish. In the second case, neuron 1 

receives the same input current density of 1.5*1012 

A/m2, but neuron 2 does not receive any input at all. 

Here, neuron 1 is finished integrating by t = 7.3 ns, 

while neuron 2 did not integrate due to the lack of an 

input current. 

Fig. 6. Demonstration of lateral inhibition. (a) Neuron 2 receives a 

higher input current than neuron 1, and neuron 1 does not finish 

integrating by t = 7.3 ns. (b) Neuron 2 receives no input current, 

and neuron 1 finishes integrating by t = 7.3 ns. 

Figure 7 provides a graphical illustration of this 

effect. Assuming a constant input current density to 

neuron 2 of 1.5*1012 A/m2, increasing the input  

Fig. 7. Neuron 2 velocity vs neuron 1 current density. As the input 

current density to Neuron 1 increases, the average DW velocity of 

neuron 2 decreases. 

current to neuron 1 decreases the average velocity of 

neuron 2’s DW. Neuron 2’s average velocity reaches a 

lower limit of 57 m/s when neuron 1’s input current 

density reaches ~2.25*1012 A/m2. 

6.2.   Winner take all using lateral inhibition 

By placing multiple neurons next to each other, as in 

Figure 8, it is possible to implement a winner take all 

(WTA) system. The neuron that exists in a higher 

energy state than the other neurons will inhibit the  

Fig. 8. Illustration of the WTA system, using the neurons discussed 

in Section 3. 



Fig. 9. Illustration of a WTA system with 10 performing pattern 

recognition on a hand-written digit. In this case, the input was an 

‘2’. The first neuron to reach the firing point was neuron 2, 

indicating that the system correctly identified the digit.  

integration of the other neurons and be promoted by 

the other neurons. Using the combination of the LIF 

neuron characteristics and lateral inhibition/WTA, it is 

possible to perform handwritten digit recognition. 

Figure 9 provides an example of a WTA system 

performing handwritten digit recognition using 10 

neurons given a pre-trained synaptic crossbar array14, 

with each neuron corresponding to a specific digit. If 

one neuron fires, the system will recognize the input as 

the digit corresponding to the neuron that fired. For 

instance, if neuron 2 fires, the system recognizes the 

input as a ‘2’. Once a neuron fires, all output neurons 

reset and enter a brief refractory period in which no 

signals are integrated. The input signals were fed into 

the system by a pretrained memristor crossbar. This 

system was capable of recognizing handwritten digits 

with an accuracy of 94%. 

7.   Conclusion 

This work discusses three previously proposed LIF 

neurons that are capable of intrinsically providing the 

leaking, integrating, firing, and lateral inhibition 

functionalities by making different modifications to a 

standard 3T-MTJ device, including by applying a 

magnetic field, introducing a magnetocrystalline 

anisotropy gradient, and introducing shape variations. 

These modifications reduce the amount of external 

circuitry required to replicate neuronal behavior, in 

turn allowing for reduced power consumption and 

ease-of-fabrication. Therefore, these could be 

important building blocks for future neural networks. 
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